Training Gaussian Process Regression models using optimized trajectories

نویسنده

  • Sheran Wiratunga
چکیده

Quadrotor helicopters and robot manipulators are used widely for both research and industrial applications. Both quadrotors and manipulators are difficult to model. Quadrotors have complex dynamic models, especially at high speeds. Obtaining an accurate model of manipulator dynamics is often difficult, due to inaccurate values for link parameters and dynamics such as friction which are difficult to model accurately. Supervised learning methods such as Gaussian Process Regression (GPR) have been used to learn the inverse dynamics of a system. These methods can estimate a dynamic model from experimental data without requiring the structure of the model to be known, and can be used online to update the model if the system changes over time. This approach has been used to learn the inverse dynamics of a manipulator, but has not yet been applied to quadrotors. In addition, collecting training data for supervised learning can be difficult and time consuming, and poor or inadequate training data may result in an inaccurate model. Another problem frequently encountered when using GPR to learn the model of a system is the large computational cost of using GPR. A number of sparse approximations of GPR exist to deal with this issue, but it is not clear which sparse approximation results in the best performance, particularly when training data is being added incrementally. This thesis proposes a method for systematically collecting training data for a GPR model. The trajectory used to collect training data is parameterized, and the parameters are optimized to maximize the GPR variance over the trajectory. This approach is tested both in simulation and experimentally for a quadrotor, and in experiments on a 4-DOF manipulator. Optimizing the training trajectories is shown to reduce the amount of training data required to learn the model of a system. The thesis also compares three sparse approximations of GPR: the dictionary approach, Sparse Spectrum GPR (SSGP) and simple downsampling of the training data to reduce the size of the training data set. Using a dictionary is found to provide the best performance, even when the dictionary contains a very small subset of the available data. Finally, all GPR models have hyperparameters, which have a significant impact on the prediction made by the GP model. Training these hyperparameters is important for getting accurate predictions. This thesis evaluates different methods of hyperparameter training on a 4-DOF manipulator to determine the most effective method of training the hyperparameters. For SSGP, the best hyperparameter training strategy is to reinitialize and train the hyperparameters after each trajectory. SSGP is also observed to be highly sensitive to the number of iterations of gradient descent used in hyperparameter training;

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bagging for Gaussian process regression

This paper proposes the application of bagging to obtain more robust and accurate predictions using Gaussian process regression models. The training data is re-sampled using the bootstrap method to form several training sets, from which multiple Gaussian process models are developed and combined through weighting to provide predictions. A number of weighting methods for model combination are di...

متن کامل

UNDERSTANDING BEHAVIOR OF ANTINEOPLASTIC MOLECULES BASED ON MLR MODELS

New statistic based models provide a wide area of prediction equipments for different science areas. Among these fields biology have just entered the contest of interdisciplinary sciences. Drug discovery is a long and expensive process which could be decreased with theoretical approaches. In this study, 500 reported assayed anti cancer molecules were extracted from Science Direct articles, sket...

متن کامل

MoleculeNet: a benchmark for molecular machine learning† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc02664a

1 Model Training and Hyperparameter Optimization All models were trained on Stanford’s GPU clusters via DeepChem. No model was allowed to train for more than 10 hours(time profile in Table S1. Users can reproduce benchmarks locally by following directions from DeepChem. Hyperparameters were determined using Gaussian Process Optimization via pyGPGO(https://github.com/hawk31/pyGPGO), with max num...

متن کامل

Approximation of Gaussian process regression models after training

The evaluation of a standard Gaussian process regression model takes time linear in the number of training data points. In this paper, the models are approximated in the feature space after training. It is empirically shown that the time required for evaluation can be drastically reduced without considerable loss in performance.

متن کامل

Gaussian Process Regression for Trajectory Analysis

Cognitive scientists have begun collecting the trajectories of hand movements as participants make decisions in experiments. These response trajectories offer a fine-grained glimpse into ongoing cognitive processes. For example, difficult decisions show more hesitation and deflection from the optimal path than easy decisions. However, many summary statistics used for trajectories throw away muc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014